LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MAS-Encryption and its Applications in Privacy-Preserving Classifiers

Photo by anisat from unsplash

Homomorphic encryption (HE) schemes, such as fully homomorphic encryption (FHE), support a number of useful computations on ciphertext in a broad range of applications, such as e-voting, private information retrieval,… Click to show full abstract

Homomorphic encryption (HE) schemes, such as fully homomorphic encryption (FHE), support a number of useful computations on ciphertext in a broad range of applications, such as e-voting, private information retrieval, cloud security, and privacy protection. While FHE schemes do not require any interaction during computation, the key limitations are large ciphertext expansion and inefficiency. Thus, to overcome these limitations, we develop a novel cryptographic tool, MAS-Encryption (MASE), to support real-value input and secure computation on the multiply-add structure. The multiply-add structures exist in many important protocols, such as classifiers and outsourced protocols, and we will explain how MASE can be used to protect the privacy of these protocols, using two case study examples. Specifically, the first case study example is the privacy-preserving Naive Bayes classifier that can achieve minimal Bayes risk, and the other example is the privacy-preserving support vector machine. We prove that the constructed classifiers are secure and evaluate their performance using real-world datasets. Experiments show that our proposed MASE scheme and MASE based classifiers are efficient, in the sense that we achieve an optimal tradeoff between computation efficiency and communication interactions. Thus, we avoid the inefficiency of FHE based paradigm.

Keywords: mas encryption; mase; encryption; privacy preserving; encryption applications

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.