LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Consensus One-step Multi-view Subspace Clustering

Photo from wikipedia

Multi-view clustering has attracted increasing attention in multimedia, machine learning and data mining communities. As one kind of the essential multi-view clustering algorithm, multi-view subspace clustering (MVSC) becomes more and… Click to show full abstract

Multi-view clustering has attracted increasing attention in multimedia, machine learning and data mining communities. As one kind of the essential multi-view clustering algorithm, multi-view subspace clustering (MVSC) becomes more and more popular due to its strong ability to reveal the intrinsic low dimensional clustering structure hidden across views. Despite superior clustering performance in various applications, we observe that existing MVSC methods directly fuse multi-view information in the similarity level by merging noisy affinity matrices; and isolate the processes of affinity learning, multi-view information fusion and clustering. Both factors may cause insufficient utilization of multi-view information, leading to unsatisfying clustering performance. This paper proposes a novel consensus one-step multi-view subspace clustering (COMVSC) method to address these issues. Instead of directly fusing multiple affinity matrices, COMVSC optimally integrates discriminative partition-level information, which is helpful to eliminate noise among data. Moreover, the affinity matrices, consensus representation and final clustering labels matrix are learned simultaneously in a unified framework. By doing so, the three steps can negotiate with each other to best serve the clustering task, leading to improved performance. Accordingly, we propose an iterative algorithm to solve the resulting optimization problem. Extensive experiment results on benchmark datasets demonstrate the superiority of our method against other state-of-the-art approaches.

Keywords: view; consensus; subspace clustering; view subspace; multi view

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.