LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neighbor-Anchoring Adversarial Graph Neural Networks

Photo by profwicks from unsplash

Graph neural networks (GNNs) have witnessed widespread adoption due to their ability to learn superior representations for graph data. While GNNs exhibit strong discriminative power, they often fall short of… Click to show full abstract

Graph neural networks (GNNs) have witnessed widespread adoption due to their ability to learn superior representations for graph data. While GNNs exhibit strong discriminative power, they often fall short of learning the underlying node distribution for increased robustness. To deal with this, inspired by generative adversarial networks (GANs), we investigate the problem of adversarial learning on graph neural networks, and propose a novel framework named NAGNN (i.e., Neighbor-anchoring Adversarial Graph Neural Networks) for graph representation learning, which trains not only a discriminator but also a generator that compete with each other. In particular, we propose a novel neighbor-anchoring strategy, where the generator produces samples with explicit features and neighborhood structures anchored on a reference real node, so that the discriminator can perform neighborhood aggregation on the fake samples to learn superior representation. The advantage of our neighbor-anchoring strategy can be demonstrated both theoretically and empirically. Furthermore, as a by-product, our generator can synthesize realistic-looking features, enabling potential applications such as automatic content summarization. Finally, we conduct extensive experiments on four public benchmark datasets, and achieve promising results under both quantitative and qualitative evaluations.

Keywords: neighbor anchoring; neural networks; anchoring adversarial; graph neural; adversarial graph

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.