LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion

Photo from wikipedia

Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the… Click to show full abstract

Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.

Keywords: view; sample level; multi view; graph fusion; incomplete multi; view clustering

Journal Title: IEEE Transactions on Knowledge and Data Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.