Social trust assessment that characterizes a pairwise trustworthiness relationship can spur diversified applications. Extensive efforts have been put in exploration, but mainly focusing on applying graph convolutional network to establish… Click to show full abstract
Social trust assessment that characterizes a pairwise trustworthiness relationship can spur diversified applications. Extensive efforts have been put in exploration, but mainly focusing on applying graph convolutional network to establish a social trust evaluation model, overlooking user feature factors related to context-aware information on social trust prediction. In this article, we aim to design a new trust assessment framework GATrust which integrates multi-aspect properties of users, including user context-specific information, network topological structure information, and locally-generated social trust relationships. GATrust can assigns different attention coefficients to multi-aspect properties of users in online social networks, for improving the prediction accuracy of social trust evaluation. The framework can then learn multiple latent factors of each trustor-trustee pair to establish a social trust evaluation model, by fusing graph attention network and graph convolution network. We conduct extensive experiments on two popular real-world datasets and the results exhibit that our proposed framework can improve the precision of social trust prediction, outperforming the state-of-the-art in the literature by 4.3% and 5.5% on both two datasets, respectively.
               
Click one of the above tabs to view related content.