LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frequency-Dependent Multi-Conductor Transmission Line Model for Shielded Power Cables Considering Geometrical Dissymmetry

Photo from wikipedia

In this paper, a broadband equivalent node-to-node admittance functions (NAFs) model for shielded power cables are presented aiming at the direct time-domain simulation. The finite-element method is employed to obtain… Click to show full abstract

In this paper, a broadband equivalent node-to-node admittance functions (NAFs) model for shielded power cables are presented aiming at the direct time-domain simulation. The finite-element method is employed to obtain the frequency-dependent per-unit-length resistances, self- and mutual-inductances, and the self- and mutual-capacitances of the power cables. The matrix rational approximations are then applied to obtain the rational model (in pole-residue form) of the terminal admittance matrix of the multi-conductor transmission line (MTL) model. Next, the numerical stability of the rational model is guaranteed by the terminal (port) passivity enforcement technique. The circuit representation of the equivalent NAFs of the full cable with the length of interest can be synthesized based on the pole-residue description. It is validated by comparing the frequency response with the one computed by applying the original MTL model.

Keywords: power cables; frequency; model; shielded power; model shielded

Journal Title: IEEE Transactions on Magnetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.