LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Auto-Gauging of Vector Potential by Parallel Sparse Direct Solvers—Numerical Observations

Photo from wikipedia

When using magnetic vector potential (MVP)-based formulations for magnetostatic or eddy-current problems, either gauge conditions specifying the divergence of the MVP or tree gauging by eliminating redundant degrees of freedom… Click to show full abstract

When using magnetic vector potential (MVP)-based formulations for magnetostatic or eddy-current problems, either gauge conditions specifying the divergence of the MVP or tree gauging by eliminating redundant degrees of freedom of the MVP is usually imposed to ensure uniqueness of solutions. Explicit gauging of the MVP is not always necessary since classical iterative solvers can automatically and implicitly fix the gauge as long as the right-hand side vectors are consistent. Besides iterative solvers, implicit gauging is also observed when using state-of-the-art parallel sparse direct solvers (PSDSs), thanks to the built-in functions of handling null-spaces of either real symmetric positive semi-definite matrix systems or those complex symmetric systems from eddy-current problems. Both static and eddy-current examples are solved by PSDS to demonstrate results of local physical quantities or global quantities such as magnetic energy or joule losses. High-order edge/nodal elements are also considered in our numerical examples and it is observed that PSDS can also easily and correctly handle the delicate discrete null spaces.

Keywords: direct solvers; vector potential; sparse direct; parallel sparse

Journal Title: IEEE Transactions on Magnetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.