LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low Delay Random Linear Coding and Scheduling Over Multiple Interfaces

Photo by jupp from unsplash

High-performance real-time applications, expected to be of importance in the upcoming 5G era, such as virtual and augmented reality or tele-presence, have stringent requirements on throughput and per-packet in-order delivery… Click to show full abstract

High-performance real-time applications, expected to be of importance in the upcoming 5G era, such as virtual and augmented reality or tele-presence, have stringent requirements on throughput and per-packet in-order delivery delay. Use of multipath transport is gaining momentum for supporting these applications. However, building an efficient, low latency multipath transfer mechanism remains highly challenging. The primary reason for this is that the delivery delay along each path is typically uncertain and time-varying. When the transmitter ignores the stochastic nature of the path delays, then packets sent along different paths frequently arrive out of order and need to be buffered at the receiver to allow in-order delivery to the application. In this paper, we propose Stochastic Earliest Delivery Path First (S-EDPF), a generalization of EDPF which takes into account uncertainty and time-variation in path delays yet has low-complexity suited to practical implementation. Moreover, we integrate a novel low-delay Forward Error Correction (FEC) scheme into S-EDPF in a principled manner by deriving the optimal schedule for coded packets across multiple paths. Finally, we demonstrate, both analytically and empirically, that S-EDPF is effective at mitigating the delay impact of reordering and loss in multipath transport protocols, offering substantial performance gains over the state of the art.

Keywords: random linear; delay random; delivery; low delay; delay; path

Journal Title: IEEE Transactions on Mobile Computing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.