Mobility management in 5G networks is a very challenging issue. It requires novel ideas and improved management so that signaling is kept minimized and far from congesting the network. Mobile… Click to show full abstract
Mobility management in 5G networks is a very challenging issue. It requires novel ideas and improved management so that signaling is kept minimized and far from congesting the network. Mobile networks have become massive generators of data and in the forthcoming years this data is expected to increase drastically. The use of intelligence and analytics based on big data is a good ally for operators to enhance operational efficiency and provide individualized services. This work proposes to exploit User Equipment (UE) patterns and hidden relationships from geo-spatial time series to minimize signaling due to idle mode mobility. We propose a holistic methodology to generate optimized Tracking Area Lists (TALs) in a per UE manner, considering its learned individual behavior. The
               
Click one of the above tabs to view related content.