In this paper, we propose a joint transceiver beamforming design method for hybrid full-duplex (FD) and half-duplex (HD) ad-hoc networks to cancel co-channel interference, thereby to improve system spectral efficiency.… Click to show full abstract
In this paper, we propose a joint transceiver beamforming design method for hybrid full-duplex (FD) and half-duplex (HD) ad-hoc networks to cancel co-channel interference, thereby to improve system spectral efficiency. To characterize network performances, we derive a general expression of transmission capacity upper bound (TC-UB) plus its two compact versions by using a stochastic geometry model. Due to the proposed beamforming design and hybrid-duplex consideration, the exact TC and conventional methods to obtain TC-UBs are not applicable. This motivates us to exploit the UB of the largest eigenvalue of desired signals, Alzerās inequality for the incomplete gamma function, and dominating interference region to formulate one general TC-UB and two of its compact versions. The numerical results show that the proposed beamforming method outperforms the existing beamforming strategies in terms of exact TC, especially when the number of transmit antennas is larger than the number of receiver antennas per node pair. In addition, the derived general TC-UB can provide relatively close TC performance as the exact ones, and its two compact versions can at least give order-wise TC performance. Moreover, we find the break-even points, where FD outperforms HD with different system configurations.
               
Click one of the above tabs to view related content.