LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graph Attention Spatial-Temporal Network With Collaborative Global-Local Learning for Citywide Mobile Traffic Prediction

Photo from wikipedia

With the rapid development of mobile cellular technologies and the increasing popularity of mobile and Internet of Things (IoT) devices, timely mobile traffic forecasting with high accuracy becomes more and… Click to show full abstract

With the rapid development of mobile cellular technologies and the increasing popularity of mobile and Internet of Things (IoT) devices, timely mobile traffic forecasting with high accuracy becomes more and more critical for proactive network service provisioning and efficient network resource allocation in smart cities. Traditional traffic forecasting methods mostly rely on time series prediction techniques, which fail to capture the complicated dynamic nature and spatial relations of mobile traffic demand. In this paper, we propose a novel deep learning framework, graph attention spatial-temporal network (GASTN), for accurate citywide mobile traffic forecasting, which can capture not only local geographical dependency but also distant inter-region relationship when considering spatial factor. Specifically, GASTN considers spatial correlation through our constructed spatial relation graph and utilizes structural recurrent neural networks to model the global near-far spatial relationships as well as the temporal dependencies. In the framework of GASTN, two attention mechanisms are designed to integrate different effects in a holistic way. Besides, in order to further enhance the prediction performance, we propose a collaborative global-local learning strategy for the training of GASTN, which takes full advantage of the knowledge from both the global model and local models for individual regions and enhance the effectiveness of our model. Extensive experiments on a large-scale real-world mobile traffic dataset demonstrate that our GASTN model dramatically outperforms the state-of-the-art methods. And it reveals that a significant enhancement in the prediction performance of GASTN can be obtained by leveraging the collaborative global-local learning strategy.

Keywords: network; collaborative global; traffic; prediction; mobile traffic; global local

Journal Title: IEEE Transactions on Mobile Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.