LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Throughput Maximization of Delay-Aware DNN Inference in Edge Computing by Exploring DNN Model Partitioning and Inference Parallelism

Photo by avasol from unsplash

Mobile Edge Computing (MEC) has emerged as a promising paradigm catering to overwhelming explosions of mobile applications, by offloading compute-intensive tasks to MEC networks for processing. The surging of deep… Click to show full abstract

Mobile Edge Computing (MEC) has emerged as a promising paradigm catering to overwhelming explosions of mobile applications, by offloading compute-intensive tasks to MEC networks for processing. The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and edge intelligence arises to provision real-time deep neural network (DNN) inference services for users. To accelerate the processing of the DNN inference of a user request in an MEC network, the DNN inference model usually can be partitioned into two connected parts: one part is processed in the local IoT device of the request, and another part is processed in a cloudlet (edge server) in the MEC network. Also, the DNN inference can be further accelerated by allocating multiple threads of the cloudlet to which the request is assigned. In this paper, we study a novel delay-aware DNN inference throughput maximization problem with the aim to maximize the number of delay-aware DNN service requests admitted, by accelerating each DNN inference through jointly exploring DNN partitioning and multi-thread execution parallelism. Specifically, we consider the problem under both offline and online request arrival settings: a set of DNN inference requests is given in advance, and a sequence of DNN inference requests arrives one by one without the knowledge of future arrivals, respectively. We first show that the defined problems are NP-hard. We then devise a novel constant approximation algorithm for the problem under the offline setting. We also propose an online algorithm with a provable competitive ratio for the problem under the online setting. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithms are promising

Keywords: delay aware; aware dnn; dnn inference; edge; inference

Journal Title: IEEE Transactions on Mobile Computing
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.