Efficient battery condition monitoring is of particular importance in large-scale, high-performance, and safety-critical mechatronic systems, e.g., electrified vehicles and smart grid. This paper pursues a detailed assessment of optimization-driven moving… Click to show full abstract
Efficient battery condition monitoring is of particular importance in large-scale, high-performance, and safety-critical mechatronic systems, e.g., electrified vehicles and smart grid. This paper pursues a detailed assessment of optimization-driven moving horizon estimation (MHE) framework by means of a reduced electrochemical model. For state-of-charge estimation, the standard MHE and two variants in the framework are examined by a comprehensive consideration of accuracy, computational intensity, effect of horizon size, and fault tolerance. A comparison with common extended Kalman filtering and unscented Kalman filtering is also carried out. Then, the feasibility and performance are demonstrated for accessing internal battery states unavailable in equivalent circuit models, such as solid-phase surface concentration and electrolyte concentration. Ultimately, a multiscale MHE-type scheme is created for State-of-Health estimation. This study is the first known systematic investigation of MHE-type estimators applied to battery management.
               
Click one of the above tabs to view related content.