LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Enhanced Robust Fault Tolerant Control Based on an Adaptive Fuzzy PID-Nonsingular Fast Terminal Sliding Mode Control for Uncertain Nonlinear Systems

Photo by molly7 from unsplash

This paper develops an enhanced robust fault tolerant control using a novel adaptive fuzzy proportional-integral-derivative-based nonsingular fast terminal sliding mode (AF-PID-NFTSM) control for a class of second-order uncertain nonlinear systems.… Click to show full abstract

This paper develops an enhanced robust fault tolerant control using a novel adaptive fuzzy proportional-integral-derivative-based nonsingular fast terminal sliding mode (AF-PID-NFTSM) control for a class of second-order uncertain nonlinear systems. In this approach, a new type of sliding surface, called proportional-integral-derivative (PID)-nonsingular fast terminal sliding mode (NFTSM) (PID-NFTSM) which combines the benefits of the PID and NFTSM sliding surfaces, is proposed to enhance the robustness and reduce the steady-state error, whilst preserving the great property of the conventional NFTSM controller. A fuzzy approximator is designed to approximate the uncertain system dynamics and an adaptive law is developed to estimate the bound of the approximation error so that the proposed robust controller does not require a need of the prior knowledge of the bound of the uncertainties and faults and the exact system dynamics. The proposed approach is then applied for attitude control of a spacecraft. The simulation results verify the superior performance of the proposed approaches over other existing advanced robust fault tolerant controllers.

Keywords: fault tolerant; robust fault; control; terminal sliding; fast terminal; nonsingular fast

Journal Title: IEEE/ASME Transactions on Mechatronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.