LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and Experimental Evaluation of a Variable Hydraulic Transmission

Photo by jrkorpa from unsplash

A low-loss hydraulic transmission offers an efficient and lightweight means to route power from a central source to distal actuators, with example applications in legged and wearable robots. For example,… Click to show full abstract

A low-loss hydraulic transmission offers an efficient and lightweight means to route power from a central source to distal actuators, with example applications in legged and wearable robots. For example, one could develop a completely passive hydraulic transmission for an exoskeleton that routes power from a healthy limb to a limb weakened by neurological injury to enable self-assist or rehabilitation. In this article, we introduce and model a variable hydraulic transmission that features rolling diaphragm cylinders and a discretely variable transmission ratio. The variable transmission utilizes digital hydraulics, wherein valves switch redundantly mounted cylinders in and out of the hydraulic circuit. The article discusses the impact of configuration on the available transmission ratios and passivity. Our modeling efforts focus on the parasitic effects that arise with power losses between the driving and driven joints, compliance and energy storage in the transmission, and drift during switching. We carefully validate the model, comparing analytically predicted fine and gross behaviors to experimental observations. Experimental results demonstrate the feasibility and utility of the proposed device and the associated model which serves as an important tool for the design and control of digital hydraulic transmission systems.

Keywords: modeling experimental; hydraulic transmission; experimental evaluation; evaluation variable; variable hydraulic; transmission

Journal Title: IEEE/ASME Transactions on Mechatronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.