LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vibration Reduction of Flexible Rope-Driven Mobile Robot for Safe Façade Operation

Photo from wikipedia

In recent years, cable-driven-parallel robots (CDPRs) have been studied for façade operations. There are various types of CDPRs; however, underconstrained CDPRs are capable of wider operating in façade workspaces than… Click to show full abstract

In recent years, cable-driven-parallel robots (CDPRs) have been studied for façade operations. There are various types of CDPRs; however, underconstrained CDPRs are capable of wider operating in façade workspaces than overconstrained CDPRs. Therefore, in this article, a dual ascender robot (DAR) was used for façade operations. Herein, two suggestions for safe façade operations are presented. First, a flexible nylon fiber rope was modeled such that the vibration direction, natural frequency, and damping ratio of the DAR could be converted through a Jacobian matrix and modal decomposition from the rope model. Second, input shaping control was applied to reduce vibrations, based on the vibration model of a DAR using the rope model. Modal decomposition was verified using a verification experiment, and the effect of input shaping was evaluated by comparing the w/input shaping and w/o input shaping experiments. w/input shaping case was shown about 48% reducing robot vibration and about 35% shortening settling time compare with w/o input shaping case.

Keywords: safe ade; rope; vibration; input shaping

Journal Title: IEEE/ASME Transactions on Mechatronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.