LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear Model Predictive Control for Integrated Energy-Efficient Torque-Vectoring and Anti-Roll Moment Distribution

Photo from wikipedia

This study applies nonlinear model predictive control (NMPC) to the torque-vectoring (TV) and front-to-total anti-roll moment distribution control of a four-wheel-drive electric vehicle with in-wheel-motors, a brake-by-wire system, and active… Click to show full abstract

This study applies nonlinear model predictive control (NMPC) to the torque-vectoring (TV) and front-to-total anti-roll moment distribution control of a four-wheel-drive electric vehicle with in-wheel-motors, a brake-by-wire system, and active suspension actuators. The NMPC cost function formulation is based on energy efficiency criteria, and strives to minimize the power losses caused by the longitudinal and lateral tire slips, friction brakes, and electric powertrains, while enhancing the vehicle cornering response in steady-state and transient conditions. The controller is assessed through simulations using an experimentally validated high-fidelity vehicle model, along ramp steer and multiple step steer maneuvers, including and excluding the direct yaw moment and active anti-roll moment distribution actuations. The results show: 1) the substantial enhancement of energy saving and vehicle stabilization performance brought by the integration of the active suspension contribution and TV; 2) the significance of the power loss terms of the NMPC formulation on the results; and 3) the effectiveness of the NMPC with respect to the benchmarking feedback and rule based controllers.

Keywords: anti roll; moment distribution; moment; roll moment

Journal Title: IEEE/ASME Transactions on Mechatronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.