LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast Variance Prediction for Iteratively Reconstructed CT Images With Locally Quadratic Regularization

Predicting noise properties of iteratively reconstructed CT images is useful for analyzing reconstruction methods; for example, local noise power spectrum (NPS) predictions may be used to quantify the detectability of… Click to show full abstract

Predicting noise properties of iteratively reconstructed CT images is useful for analyzing reconstruction methods; for example, local noise power spectrum (NPS) predictions may be used to quantify the detectability of an image feature, to design regularization methods, or to determine dynamic tube current adjustment during a CT scan. This paper presents a method for fast prediction of reconstructed image variance and local NPS for statistical reconstruction methods using quadratic or locally quadratic regularization. Previous methods either require impractical computation times to generate an approximate map of the variance of each reconstructed voxel, or are restricted to specific CT geometries. Our method can produce a variance map of the entire image, for locally shift-invariant CT geometries with sufficiently fine angular sampling, using a computation time comparable to a single back-projection. The method requires only the projection data to be used in the reconstruction, not a reconstruction itself, and is reasonably accurate except near image edges where edge-preserving regularization behaves highly nonlinearly. We evaluate the accuracy of our method using reconstructions of both simulated CT data and real CT scans of a thorax phantom.

Keywords: iteratively reconstructed; regularization; quadratic regularization; reconstructed images; variance; locally quadratic

Journal Title: IEEE Transactions on Medical Imaging
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.