In endovascular catheter interventions, the determination of the three-dimensional (3D) catheter shape can increase navigation information and help reduce trauma. This study describes a shape determination method for a flexible… Click to show full abstract
In endovascular catheter interventions, the determination of the three-dimensional (3D) catheter shape can increase navigation information and help reduce trauma. This study describes a shape determination method for a flexible interventional catheter using ultrasound scanning and a two-step particle filter without X-ray fluoroscopy. First, we propose a multi-feature, multi-template particle filter algorithm for accurate catheter tracking from ultrasound images. Second, we model the mechanical behavior of the catheter and apply a particle filter shape optimization algorithm to refine the results from the first step. Finally, the acquired catheter’s 3D shapes are displayed together with the preoperative 3D images of the cardiac structures to provide intuitive endovascular navigation. We validated our method using ultrasound scanning of the straight and curved catheters in a water tank, and the shape determination errors were 1.44 ± 0.38 mm and 1.95 ± 0.46 mm, respectively. Further, endovascular catheter shape determination was validated in a catheter intervention experiment with a heart phantom. The error of the acquired endovascular catheter shape was 2.23 ± 0.87 mm. These results demonstrate that our two-step method is both accurate and effective. Using ultrasound scanning for shape determination of a flexible catheter will be helpful in endovascular interventions, reducing exposure to radiation and providing rich navigation information.
               
Click one of the above tabs to view related content.