LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HEp-2 Specimen Image Segmentation and Classification Using Very Deep Fully Convolutional Network

Photo by dulhiier from unsplash

Reliable identification of Human Epithelial-2 (HEp-2) cell patterns can facilitate the diagnosis of systemic autoimmune diseases. However, traditional approach requires experienced experts to manually recognize the cell patterns, which suffers… Click to show full abstract

Reliable identification of Human Epithelial-2 (HEp-2) cell patterns can facilitate the diagnosis of systemic autoimmune diseases. However, traditional approach requires experienced experts to manually recognize the cell patterns, which suffers from the inter-observer variability. In this paper, an automatic pattern recognition system using fully convolutional network (FCN) was proposed to simultaneously address the segmentation and classification problem of HEp-2 specimen images. The proposed system transforms the residual network (ResNet) to fully convolutional ResNet (FCRN) enabling the network to perform semantic segmentation task. A sand-clock shape residual module is proposed to effectively and economically improve the performance of FCRN. The publicly available I3A-2014 data set was used to train the FCRN model to classify HEp-2 specimen images into seven catalogs: homogeneous, speckled, nucleolar, centromere, golgi, nuclear membrane, and mitotic spindle. The proposed system achieves a mean class accuracy of 94.94% for leave-one-out tests, which outperforms the winner of ICPR 2014, i.e., 89.93%. At the same time, our model also achieves a segmentation accuracy of 89.03%, which is 19.05% higher than that of the benchmark approach, i.e., 69.98%.

Keywords: hep specimen; network; segmentation; fully convolutional; convolutional network; segmentation classification

Journal Title: IEEE Transactions on Medical Imaging
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.