LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia

Photo from wikipedia

Cerebral ischemic stroke causes injury to brain tissue characterized by a complex cascade of neuronal and vascular events. Imaging during the early stages of its development allows prediction of tissue… Click to show full abstract

Cerebral ischemic stroke causes injury to brain tissue characterized by a complex cascade of neuronal and vascular events. Imaging during the early stages of its development allows prediction of tissue infarction and penumbra so that optimal intervention can be determined in order to salvage brain function impairment. Therefore, there is a critical need for novel imaging techniques that can characterize brain injury in the earliest phases of the ischemic stroke. This paper examined optical coherence tomography (OCT) for imaging acute injury in experimental ischemic stroke in vivo. Based on endogenous optical scattering signals provided by OCT imaging, we have developed a single, integrated imaging platform enabling the measurement of changes in blood perfusion, blood flow, erythrocyte velocity, and light attenuation within a cortical tissue, during focal cerebral ischemia in a mouse model. During the acute phase (from 5 min to the first few hours following the blood occlusion), the multi-parametric OCT imaging revealed multiple hemodynamic and tissue scattering responses in vivo, including cerebral blood flow deficits, capillary non-perfusion, displacement of penetrating vessels, and increased light attenuation in the cortical tissue at risk that are spatially correlated with the infarct core, as determined by postmortem staining with triphenyltetrazolium chloride. The use of multi-parametric OCT imaging may aid in the comprehensive evaluation of ischemic lesions during the early stages of stroke, thereby providing essential knowledge for guiding treatment decisions.

Keywords: oct imaging; perfusion; stroke; parametric oct; multi parametric; tissue

Journal Title: IEEE Transactions on Medical Imaging
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.