Automatic and accurate classification of apoptosis, or programmed cell death, will facilitate cell biology research. The state-of-the-art approaches in apoptosis classification use deep convolutional neural networks (CNNs). However, these networks… Click to show full abstract
Automatic and accurate classification of apoptosis, or programmed cell death, will facilitate cell biology research. The state-of-the-art approaches in apoptosis classification use deep convolutional neural networks (CNNs). However, these networks are not efficient in encoding the part-whole relationships, thus requiring a large number of training samples to achieve robust generalization. This paper proposes an efficient variant of capsule networks (CapsNets) as an alternative to CNNs. Extensive experimental results demonstrate that the proposed CapsNets achieve competitive performances in target cell apoptosis classification, while significantly outperforming CNNs when the number of training samples is small. To utilize temporal information within microscopy videos, we propose a recurrent CapsNet constructed by stacking a CapsNet and a bi-directional long short-term recurrent structure. Our experiments show that when considering temporal constraints, the recurrent CapsNet achieves 93.8% accuracy and makes significantly more consistent prediction than NNs.
               
Click one of the above tabs to view related content.