Prognostic tumor growth modeling via volumetric medical imaging observations can potentially lead to better outcomes of tumor treatment management and surgical planning. Recent advances of convolutional networks (ConvNets) have demonstrated… Click to show full abstract
Prognostic tumor growth modeling via volumetric medical imaging observations can potentially lead to better outcomes of tumor treatment management and surgical planning. Recent advances of convolutional networks (ConvNets) have demonstrated higher accuracy than traditional mathematical models can be achieved in predicting future tumor volumes. This indicates that deep learning based data-driven techniques may have great potentials on addressing such problem. However, current 2D image patch based modeling approaches can not make full use of the spatio-temporal imaging context of the tumor’s longitudinal 4D (3D + time) patient data. Moreover, they are incapable to predict clinically-relevant tumor properties, other than the tumor volumes. In this paper, we exploit to formulate the tumor growth process through convolutional Long Short-Term Memory (ConvLSTM) that extract tumor’s static imaging appearances and simultaneously capture its temporal dynamic changes within a single network. We extend ConvLSTM into the spatio-temporal domain (ST-ConvLSTM) by jointly learning the inter-slice 3D contexts and the longitudinal or temporal dynamics from multiple patient studies. Our approach can incorporate other non-imaging patient information in an end-to-end trainable manner. Experiments are conducted on the largest 4D longitudinal tumor dataset of 33 patients to date. Results validate that the proposed ST-ConvLSTM model produces a Dice score of 83.2%±5.1% and a RVD of 11.2%±10.8%, both statistically significantly outperforming (p < 0.05) other compared methods of traditional linear model, ConvLSTM, and generative adversarial network (GAN) under the metric of predicting future tumor volumes. Additionally, our new method enables the prediction of both cell density and CT intensity numbers. Last, we demonstrate the generalizability of ST-ConvLSTM by employing it in 4D medical image segmentation task, which achieves an averaged Dice score of 86.3%±1.2% for left-ventricle segmentation in 4D ultrasound with 3 seconds per patient case.
               
Click one of the above tabs to view related content.