LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined Therapy Planning, Real-Time Monitoring, and Low Intensity Focused Ultrasound Treatment Using a Diagnostic Imaging Array

Photo from wikipedia

Low intensity focused ultrasound (FUS) therapies use low intensity focused ultrasound waves, typically in combination with microbubbles, to non-invasively induce a variety of therapeutic effects. FUS therapies require pre-therapy planning… Click to show full abstract

Low intensity focused ultrasound (FUS) therapies use low intensity focused ultrasound waves, typically in combination with microbubbles, to non-invasively induce a variety of therapeutic effects. FUS therapies require pre-therapy planning and real-time monitoring during treatment to ensure the FUS beam is correctly targeted to the desired tissue region. To facilitate more streamlined FUS treatments, we present a system for pre-therapy planning, real-time FUS beam visualization, and low intensity FUS treatment using a single diagnostic imaging array. Therapy planning was accomplished by manually segmenting a B-mode image captured by the imaging array and calculating a sonication pattern for the treatment based on the user-input region of interest. For real-time monitoring, the imaging array transmitted a visualization pulse which was focused to the same location as the FUS therapy beam and ultrasonic backscatter from this pulse was used to reconstruct the intensity field of the FUS beam. The therapy planning and beam monitoring techniques were demonstrated in a tissue-mimicking phantom and in a rat tumor in vivo while a mock FUS treatment was carried out. The FUS pulse from the imaging array was excited with an MI of 0.78, which suggests that the array could be used to administer select low intensity FUS treatments involving microbubble activation.

Keywords: imaging array; low intensity; intensity; therapy planning; array

Journal Title: IEEE transactions on medical imaging
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.