We introduce a dataset for facilitating audio-visual analysis of music performances. The dataset comprises 44 simple multi-instrument classical music pieces assembled from coordinated but separately recorded performances of individual tracks.… Click to show full abstract
We introduce a dataset for facilitating audio-visual analysis of music performances. The dataset comprises 44 simple multi-instrument classical music pieces assembled from coordinated but separately recorded performances of individual tracks. For each piece, we provide the musical score in MIDI format, the audio recordings of the individual tracks, the audio and video recording of the assembled mixture, and ground-truth annotation files including frame-level and note-level transcriptions. We describe our methodology for the creation of the dataset, particularly highlighting our approaches to address the challenges involved in maintaining synchronization and expressiveness. We demonstrate the high quality of synchronization achieved with our proposed approach by comparing the dataset with existing widely used music audio datasets. We anticipate that the dataset will be useful for the development and evaluation of existing music information retrieval (MIR) tasks, as well as for novel multimodal tasks. We benchmark two existing MIR tasks (multipitch analysis and score-informed source separation) on the dataset and compare them with other existing music audio datasets. In addition, we consider two novel multimodal MIR tasks (visually informed multipitch analysis and polyphonic vibrato analysis) enabled by the dataset and provide evaluation measurements and baseline systems for future comparisons (from our recent work). Finally, we propose several emerging research directions that the dataset enables.
               
Click one of the above tabs to view related content.