LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive Hypergraph Embedded Semi-Supervised Multi-Label Image Annotation

Photo by usgs from unsplash

Multilabel image annotation attracts a lot of research interest due to its practicability in multimedia and computer vision fields, while the need for a large amount of labeled training data… Click to show full abstract

Multilabel image annotation attracts a lot of research interest due to its practicability in multimedia and computer vision fields, while the need for a large amount of labeled training data to achieve promising performance makes it a challenging task. Fortunately, unlabeled and relevant data are widely available and these data can be used to serve the annotation task. To this end, we propose a novel adaptive hypergraph learning (AHL) method for multilabel image annotation in a semisupervised way, in which both the limited labeled data and abundant unlabeled data are utilized to facilitate the annotation performance. In detail, we seek a multilabel propagation scheme by learning a hypergraph which is used to preserve the local geometric structures of data in a high-order manner. Meanwhile, a feature projection is integrated into AHL to obtain a latent feature space where unlabeled instances can be effectively and robustly assigned with multiple labels. Experiments on six widely used image datasets are conducted to evaluate our model and the results demonstrate that the proposed AHL outperforms other state-of-the-art semisupervised methods.

Keywords: adaptive hypergraph; hypergraph embedded; image annotation; annotation; image

Journal Title: IEEE Transactions on Multimedia
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.