LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LensCast: Robust Wireless Video Transmission over mmWave MIMO with Lens Antenna Array

Photo by mattykwong1 from unsplash

In this paper, we present LensCast, a novel cross-layer video transmission framework for wireless networks, which seamlessly integrates millimeter wave (mmWave) lens multiple-input multiple-output (MIMO) with robust video transmission. LensCast… Click to show full abstract

In this paper, we present LensCast, a novel cross-layer video transmission framework for wireless networks, which seamlessly integrates millimeter wave (mmWave) lens multiple-input multiple-output (MIMO) with robust video transmission. LensCast is designed to exploit the video content diversity at the application layer, together with the spatial path diversity of lens antenna array at the physical layer, to achieve graceful video transmission performance under varying channel conditions. In LensCast, a transmission distortion minimization problem is formulated with the consideration of video chunk scheduling, path matching and power allocation, which is an intractable mixed integer non-linear programming (MINLP) problem. The solution of this MINLP problem is converted into resource allocation (i.e., joint path matching and power allocation) plus chunk scheduling. First, resource allocation is investigated with given chunk scheduling results. By analyzing the optimality of the resource allocation problem, a winner-takes-all assignment is obtained to guide resource allocation. After that, a greedy water-filling algorithm is proposed as a near-optimal solution. Second, we propose a low-complexity chunk scheduling algorithm to schedule chunks for each transmission. Simulation results demonstrate that the proposed LensCast achieves an improved performance in terms of both peak signal-to-noise ratio and visual quality comparing with reference schemes.

Keywords: lenscast; video; transmission; lens antenna; video transmission; allocation

Journal Title: IEEE Transactions on Multimedia
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.