LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

1-bit Observation for Direct-Learning-Based Digital Predistortion of RF Power Amplifiers

In this paper, we propose a low-cost data-acquisition approach for model extraction of digital predistortion (DPD) of RF power amplifiers. The proposed approach utilizes only 1-bit-resolution analog-to-digital converters (ADCs) in… Click to show full abstract

In this paper, we propose a low-cost data-acquisition approach for model extraction of digital predistortion (DPD) of RF power amplifiers. The proposed approach utilizes only 1-bit-resolution analog-to-digital converters (ADCs) in the observation path to digitize the error signal between the input and output signals. The DPD coefficients are then estimated based on the direct learning architecture using the measured signs of the error signal. The proposed solution is proved feasible in theory, and the experimental results show that the proposed algorithm achieves the performance equivalent to that using the conventional method. Replacing high-resolution ADCs with 1-bit comparators in the feedback path can dramatically reduce the power consumption and cost of the DPD system. The 1-bit solution also makes DPD become practically implementable in future broadband systems since it is relatively straightforward to achieve an ultrahigh sampling speed in data conversion using only simple comparators.

Keywords: direct learning; digital predistortion; power amplifiers; power

Journal Title: IEEE Transactions on Microwave Theory and Techniques
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.