A new method is proposed for the accurate experimental characterization and fully automated extraction of compact nonlinear models for field-effect transistors (FETs). The approach, which leads to a charge-conservative description,… Click to show full abstract
A new method is proposed for the accurate experimental characterization and fully automated extraction of compact nonlinear models for field-effect transistors (FETs). The approach, which leads to a charge-conservative description, is based on a single large-signal measurement under a two-tone sinusoidal wave excitation. A suitable choice of tone frequencies, amplitudes, and bias allows to adequately characterize the transistor over the whole safe operating region. The voltage-controlled nonlinear functions describing the two-port FET model can be computed over an arbitrarily dense voltage domain by solving an overdetermined system of linear equations. These equations are expressed in terms of a new nonlinear function sampling operator based on a biperiodic Fourier series description of the acquired frequency spectra. The experimental validation is carried out on a 0.25- $\mu \text{m}$ gallium nitride (GaN) on silicon carbide (SiC) high-electron-mobility transistor (HEMT) under continuous-wave (CW) and two-tone excitation (intermodulation distortion test).
               
Click one of the above tabs to view related content.