LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multitarget Respiration Detection With Adaptive Digital Beamforming Technique Based on SIMO Radar

Photo from wikipedia

The Doppler radar has been widely used in respiration detection. However, most of the existing microwave respiration detection works are intended for either a single human subject in front of… Click to show full abstract

The Doppler radar has been widely used in respiration detection. However, most of the existing microwave respiration detection works are intended for either a single human subject in front of the radar or multiple subjects with known positions. In this article, a system based on single-input–multiple-output (SIMO) continuous-wave (CW) radar equipped with adaptive digital beamforming (ADBF) technique is presented to detect the respiration of multiple human subjects at unknown positions simultaneously. A solution based on the modified Capon (m-Capon) direction-of-arrival (DOA) estimation and linear constraint minimal variance (LCMV) ADBF is proposed to automatically find the angles of human subjects. By forming spatially distributed beams toward the subjects of interest, human respiration can be remotely obtained. Furthermore, for the detection of each person’s respiration, nulls are also generated at the angles of nearby interfering subjects, which results in high target discrimination capability when multiple human subjects are close to each other. The experimental results show good detection accuracy compared with the reference sensor, which verifies the effectiveness of the developed system for multitarget respiration detection.

Keywords: adaptive digital; respiration; digital beamforming; respiration detection; radar; detection

Journal Title: IEEE Transactions on Microwave Theory and Techniques
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.