LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Tunable Electrostatic Nanomechanical Resonators

Photo by sarahdorweiler from unsplash

There has been significant interest toward highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly clamped… Click to show full abstract

There has been significant interest toward highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly clamped bridges, slightly curved as shallow arches due to residual stresses are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of midplane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 μm separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler–Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow bandpass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

Keywords: nanomechanical resonators; highly tunable; tunable electrostatic; electrostatic nanomechanical

Journal Title: IEEE Transactions on Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.