LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selectivity of Protein Interactions Stimulated by Terahertz Signals

Photo by nci from unsplash

It has been established that Terahertz (THz) band signals can interact with biomolecules through resonant modes. Specifically, of interest here, protein activation. Our research goal is to show how directing… Click to show full abstract

It has been established that Terahertz (THz) band signals can interact with biomolecules through resonant modes. Specifically, of interest here, protein activation. Our research goal is to show how directing the mechanical signaling inside protein molecules using THz signals can control changes in their structure and activate associated biochemical and biomechanical events. To establish that, we formulate a selectivity metric that quantifies the system performance and captures the capability of the nanoantenna to induce a conformational change in the desired protein molecule/population. The metric provides a score between −1 and 1 that indicates the degree of control we have over the system to achieve targeted protein interactions. To develop the selectivity measure, we first use the Langevin stochastic equation driven by an external force to model the protein behavior. We then determine the probability of protein folding by computing the steady-state energy of the driven protein and then generalize our model to account for protein populations. Our numerical analysis results indicate that a maximum selectivity score is attained when only the targeted population experiences a folding behavior due to the impinging THz signal. From the achieved selectivity values, we conclude that the system response not only depends on the resonant frequency but also on the system controlling parameters namely, the nanoantenna force, the damping constant, and the abundance of each protein population. Based on the selectivity metric, the nanoantenna must be tuned to a frequency that is not necessarily the resonant frequency of the protein. The presented work sheds light on the potential associated with the electromagnetic-based control of protein networks, which could lead to a plethora of applications in the medical field ranging from bio-sensing to targeted therapy.

Keywords: system; protein interactions; selectivity; interactions stimulated; selectivity protein; protein

Journal Title: IEEE Transactions on NanoBioscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.