LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Network Robustness via Shielding

Photo from wikipedia

We consider shielding critical links to enhance the robustness of a network, in which shielded links are resilient to failures. We first study the problem of increasing network connectivity by… Click to show full abstract

We consider shielding critical links to enhance the robustness of a network, in which shielded links are resilient to failures. We first study the problem of increasing network connectivity by shielding links that belong to small cuts of a network, which improves the network reliability under random link failures. We then focus on the problem of shielding links to guarantee network connectivity under geographical and general failure models. We develop a mixed integer linear program (MILP) to obtain the minimum cost shielding to guarantee the connectivity of a single source–destination pair under a general failure model, and exploit geometric properties to decompose the shielding problem under a geographical failure model. We extend our MILP formulation to guarantee the connectivity of the entire network, and use Benders decomposition to significantly reduce the running time. We also apply simulated annealing to obtain near-optimal solutions in much shorter time. Finally, we extend the algorithms to guarantee partial network connectivity, and observe significant reduction in the shielding cost, especially when the geographical failure region is small.

Keywords: network; guarantee; robustness; connectivity; network connectivity; failure

Journal Title: IEEE/ACM Transactions on Networking
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.