LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Delay-Based Network Utility Maximization Modelling for Congestion Control in Named Data Networking

Photo by charlesdeluvio from unsplash

Content replication and name-based routing lead to a natural multi-source and multipath transmission paradigm in NDN. Due to the unique connectionless characteristic of NDN, current end-to-end multipath congestion control schemes… Click to show full abstract

Content replication and name-based routing lead to a natural multi-source and multipath transmission paradigm in NDN. Due to the unique connectionless characteristic of NDN, current end-to-end multipath congestion control schemes (e.g. MPTCP) cannot be used directly on NDN. This paper proposes a Network Utility Maximization (NUM) model to formulate multi-source and multipath transmission in NDN with in-network caches. From this model, a family of receiver-driven transmission solutions can be derived, named as path-specified congestion control. The path-specified congestion control enables content consumers to separate the traffic control on each path, which consequently facilitates fair and efficient bandwidth sharing amongst all consumers. As a specific instance, a Delay-based Path-specified Congestion Control Protocol (DPCCP) is presented, which utilizes queuing delays as signals to measure and control congestion levels of different bottlenecks. In addition, a set of high-performance congestion control laws are designed to accelerate bandwidth and fairness convergence towards the optimum defined by the NUM model. Finally, DPCCP is compared with state-of-the-art solutions. The experimental evaluations show that DPCCP outperforms existing solutions in terms of bandwidth utilization, convergence time and packet loss.

Keywords: congestion control; network utility; control; utility maximization; congestion

Journal Title: IEEE/ACM Transactions on Networking
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.