This paper presents a nearest neighbor partitioning method designed to improve the performance of a neural-network classifier. For neural-network classifiers, usually the number, positions, and labels of centroids are fixed… Click to show full abstract
This paper presents a nearest neighbor partitioning method designed to improve the performance of a neural-network classifier. For neural-network classifiers, usually the number, positions, and labels of centroids are fixed in partition space before training. However, that approach limits the search for potential neural networks during optimization; the quality of a neural network classifier is based on how clear the decision boundaries are between classes. Although attempts have been made to generate floating centroids automatically, these methods still tend to generate sphere-like partitions and cannot produce flexible decision boundaries. We propose the use of nearest neighbor classification in conjunction with a neural-network classifier. Instead of being bound by sphere-like boundaries (such as the case with centroid-based methods), the flexibility of nearest neighbors increases the chance of finding potential neural networks that have arbitrarily shaped boundaries in partition space. Experimental results demonstrate that the proposed method exhibits superior performance on accuracy and average f-measure.
               
Click one of the above tabs to view related content.