LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning Deep Generative Models With Doubly Stochastic Gradient MCMC

Photo from wikipedia

Deep generative models (DGMs), which are often organized in a hierarchical manner, provide a principled framework of capturing the underlying causal factors of data. Recent work on DGMs focussed on… Click to show full abstract

Deep generative models (DGMs), which are often organized in a hierarchical manner, provide a principled framework of capturing the underlying causal factors of data. Recent work on DGMs focussed on the development of efficient and scalable variational inference methods that learn a single model under some mean-field or parameterization assumptions. However, little work has been done on extending Markov chain Monte Carlo (MCMC) methods to Bayesian DGMs, which enjoy many advantages compared with variational methods. We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of DGMs in a collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a mini-batch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over hidden variables via a neural adaptive importance sampler, where the proposal distribution is parameterized by a deep neural network and learnt jointly along with the sampling process. We demonstrate the effectiveness of learning various DGMs on a wide range of tasks, including density estimation, data generation, and missing data imputation. Our method outperforms many state-of-the-art competitors.

Keywords: doubly stochastic; mcmc; gradient mcmc; generative models; stochastic gradient; deep generative

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.