LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generative Kernels for Tree-Structured Data

Photo from academic.microsoft.com

This paper presents a family of methods for the design of adaptive kernels for tree-structured data that exploits the summarization properties of hidden states of hidden Markov models for trees.… Click to show full abstract

This paper presents a family of methods for the design of adaptive kernels for tree-structured data that exploits the summarization properties of hidden states of hidden Markov models for trees. We introduce a compact and discriminative feature space based on the concept of hidden states multisets and we discuss different approaches to estimate such hidden state encoding. We show how it can be used to build an efficient and general tree kernel based on Jaccard similarity. Furthermore, we derive an unsupervised convolutional generative kernel using a topology induced on the Markov states by a tree topographic mapping. This paper provides an extensive empirical assessment on a variety of structured data learning tasks, comparing the predictive accuracy and computational efficiency of state-of-the-art generative, adaptive, and syntactical tree kernels. The results show that the proposed generative approach has a good tradeoff between computational complexity and predictive performance, in particular when considering the soft matching introduced by the topographic mapping.

Keywords: generative kernels; topology; kernels tree; structured data; tree structured

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.