LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Hyperspectral Image Sharpening

Photo from wikipedia

Hyperspectral image (HSI) sharpening, which aims at fusing an observable low spatial resolution (LR) HSI (LR-HSI) with a high spatial resolution (HR) multispectral image (HR-MSI) of the same scene to… Click to show full abstract

Hyperspectral image (HSI) sharpening, which aims at fusing an observable low spatial resolution (LR) HSI (LR-HSI) with a high spatial resolution (HR) multispectral image (HR-MSI) of the same scene to acquire an HR-HSI, has recently attracted much attention. Most of the recent HSI sharpening approaches are based on image priors modeling, which are usually sensitive to the parameters selection and time-consuming. This paper presents a deep HSI sharpening method (named DHSIS) for the fusion of an LR-HSI with an HR-MSI, which directly learns the image priors via deep convolutional neural network-based residual learning. The DHSIS method incorporates the learned deep priors into the LR-HSI and HR-MSI fusion framework. Specifically, we first initialize the HR-HSI from the fusion framework via solving a Sylvester equation. Then, we map the initialized HR-HSI to the reference HR-HSI via deep residual learning to learn the image priors. Finally, the learned image priors are returned to the fusion framework to reconstruct the final HR-HSI. Experimental results demonstrate the superiority of the DHSIS approach over existing state-of-the-art HSI sharpening approaches in terms of reconstruction accuracy and running time.

Keywords: image; hsi sharpening; hyperspectral image; image priors; fusion; hsi

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.