LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exponential Stability Analysis for Delayed Semi-Markovian Recurrent Neural Networks: A Homogeneous Polynomial Approach

Photo by dawson2406 from unsplash

This paper investigates the exponential stability analysis issue for a class of delayed recurrent neural networks (RNNs) with semi-Markovian parameters. By constructing a stochastic Lyapunov functional and using some zoom… Click to show full abstract

This paper investigates the exponential stability analysis issue for a class of delayed recurrent neural networks (RNNs) with semi-Markovian parameters. By constructing a stochastic Lyapunov functional and using some zoom techniques to estimate its weak infinitesimal operator, the exponential mean square stability criteria have been proposed for the Markovian neural networks with certain transition probabilities. We then generalize the homogeneous polynomial approach for the delayed Markovian RNNs with uncertain transition probabilities during the stability analysis. Theoretical results have obtained by introducing an appropriate technique for dealing with a large number of complex homogeneous polynomial matrix inequalities. Finally, numerical examples are provided to demonstrate the effectiveness of the proposed technique.

Keywords: neural networks; stability analysis; homogeneous polynomial; recurrent neural; exponential stability; stability

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.