LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Natural Language Statistical Features of LSTM-Generated Texts

Photo by erol from unsplash

Long short-term memory (LSTM) networks have recently shown remarkable performance in several tasks that are dealing with natural language generation, such as image captioning or poetry composition. Yet, only few… Click to show full abstract

Long short-term memory (LSTM) networks have recently shown remarkable performance in several tasks that are dealing with natural language generation, such as image captioning or poetry composition. Yet, only few works have analyzed text generated by LSTMs in order to quantitatively evaluate to which extent such artificial texts resemble those generated by humans. We compared the statistical structure of LSTM-generated language to that of written natural language, and to those produced by Markov models of various orders. In particular, we characterized the statistical structure of language by assessing word-frequency statistics, long-range correlations, and entropy measures. Our main finding is that while both LSTM- and Markov-generated texts can exhibit features similar to real ones in their word-frequency statistics and entropy measures, LSTM-texts are shown to reproduce long-range correlations at scales comparable to those found in natural language. Moreover, for LSTM networks, a temperature-like parameter controlling the generation process shows an optimal value—for which the produced texts are closest to real language—consistent across different statistical features investigated.

Keywords: statistical features; language statistical; natural language; lstm generated; generated texts; language

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.