LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Least Squares Fisher Discriminant Analysis

Photo from wikipedia

While being one of the first and most elegant tools for dimensionality reduction, Fisher linear discriminant analysis (FLDA) is not currently considered among the top methods for feature extraction or… Click to show full abstract

While being one of the first and most elegant tools for dimensionality reduction, Fisher linear discriminant analysis (FLDA) is not currently considered among the top methods for feature extraction or classification. In this paper, we will review two recent approaches to FLDA, namely, least squares Fisher discriminant analysis (LSFDA) and regularized kernel FDA (RKFDA) and propose deep FDA (DFDA), a straightforward nonlinear extension of LSFDA that takes advantage of the recent advances on deep neural networks. We will compare the performance of RKFDA and DFDA on a large number of two-class and multiclass problems, many of them involving class-imbalanced data sets and some having quite large sample sizes; we will use, for this, the areas under the receiver operating characteristics (ROCs) curve of the classifiers considered. As we shall see, the classification performance of both methods is often very similar and particularly good on imbalanced problems, but building DFDA models is considerably much faster than doing so for RKFDA, particularly in problems with quite large sample sizes.

Keywords: least squares; discriminant analysis; squares fisher; fisher discriminant; deep least; analysis

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.