LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Classifier Ensemble for Imbalanced Data

Photo by limorganon from unsplash

The class imbalance problem has become a leading challenge. Although conventional imbalance learning methods are proposed to tackle this problem, they have some limitations: 1) undersampling methods suffer from losing… Click to show full abstract

The class imbalance problem has become a leading challenge. Although conventional imbalance learning methods are proposed to tackle this problem, they have some limitations: 1) undersampling methods suffer from losing important information and 2) cost-sensitive methods are sensitive to outliers and noise. To address these issues, we propose a hybrid optimal ensemble classifier framework that combines density-based undersampling and cost-effective methods through exploring state-of-the-art solutions using multi-objective optimization algorithm. Specifically, we first develop a density-based undersampling method to select informative samples from the original training data with probability-based data transformation, which enables to obtain multiple subsets following a balanced distribution across classes. Second, we exploit the cost-sensitive classification method to address the incompleteness of information problem via modifying weights of misclassified minority samples rather than the majority ones. Finally, we introduce a multi-objective optimization procedure and utilize connections between samples to self-modify the classification result using an ensemble classifier framework. Extensive comparative experiments conducted on real-world data sets demonstrate that our method outperforms the majority of imbalance and ensemble classification approaches.

Keywords: classifier ensemble; imbalance; ensemble imbalanced; problem; imbalanced data; hybrid classifier

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.