LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decentralized Event-Triggered Adaptive Control of Discrete-Time Nonzero-Sum Games Over Wireless Sensor-Actuator Networks With Input Constraints

Photo by jontyson from unsplash

This article studies an event-triggered communication and adaptive dynamic programming (ADP) co-design control method for the multiplayer nonzero-sum (NZS) games of a class of nonlinear discrete-time wireless sensor-actuator network (WSAN)… Click to show full abstract

This article studies an event-triggered communication and adaptive dynamic programming (ADP) co-design control method for the multiplayer nonzero-sum (NZS) games of a class of nonlinear discrete-time wireless sensor-actuator network (WSAN) systems subject to input constraints. By virtue of the ADP algorithm, the critic and actor networks are established to attain the approximate Nash equilibrium point solution in the context of the constrained control mechanism. Simultaneously, as the sensors and actuators are physically distributed, a decentralized event-triggered communication protocol is presented, accompanied by a dead-zone operation which avoids the unnecessary events. By predefining the triggering thresholds and compensation values, a novel adaptive triggering condition is derived to guarantee the stability of the event-based closed-loop control system. Then resorting to the Lyapunov theory, the system states and the critic/actor network weight estimation errors are proven to be ultimately bounded. Moreover, an explicit analysis on the nontriviality of the interevent times is also provided. Finally, two numerical examples are conducted to validate the effectiveness of the proposed method.

Keywords: wireless sensor; discrete time; control; nonzero sum; event triggered; event

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.