This article investigates the event-triggered synchronization of delayed neural networks (NNs). A novel integral-based event-triggered scheme (IETS) is proposed where the integral of the system states, and past triggered data… Click to show full abstract
This article investigates the event-triggered synchronization of delayed neural networks (NNs). A novel integral-based event-triggered scheme (IETS) is proposed where the integral of the system states, and past triggered data over a period of time are used. With the proposed IETS, the integral event-triggered synchronization problem becomes a distributed delay problem. Using the Bessel–Legendre inequalities, sufficient conditions for the existence of a controller that ensures asymptotic synchronization are provided in the form of linear matrix inequalities (LMIs). Illustrative examples are used to demonstrate the advantages of the proposed IETS method over other event-triggered scheme (ETS) methods. Moreover, this IETS method is applied to the image encryption and decryption. A novel encryption algorithm is proposed to enhance the quality of the encryption process.
               
Click one of the above tabs to view related content.