Recent deep trackers have shown superior performance in visual tracking. In this article, we propose a cascaded correlation refinement approach to facilitate the robustness of deep tracking. The core idea… Click to show full abstract
Recent deep trackers have shown superior performance in visual tracking. In this article, we propose a cascaded correlation refinement approach to facilitate the robustness of deep tracking. The core idea is to address accurate target localization and reliable model update in a collaborative way. To this end, our approach cascades multiple stages of correlation refinement to progressively refine target localization. Thus, the localized object could be used to learn an accurate on-the-fly model for improving the reliability of model update. Meanwhile, we introduce an explicit measure to identify the tracking failure and then leverage a simple yet effective look-back scheme to adaptively incorporate the initial model and on-the-fly model to update the tracking model. As a result, the tracking model can be used to localize the target more accurately. Extensive experiments on OTB2013, OTB2015, VOT2016, VOT2018, UAV123, and GOT-10k demonstrate that the proposed tracker achieves the best robustness against the state of the arts.
               
Click one of the above tabs to view related content.