LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local–Global Memory Neural Network for Medication Prediction

Photo by kellysikkema from unsplash

Electronic medical records (EMRs) play an important role in medical data mining and sequential data learning. In this article, we propose to use a sequential neural network with dynamic content-based… Click to show full abstract

Electronic medical records (EMRs) play an important role in medical data mining and sequential data learning. In this article, we propose to use a sequential neural network with dynamic content-based memories to predict future medications, given EMRs. The local–global memory neural network contains two layers of memories: the local memory and the global memory. Particularly, our method learns the hidden knowledge within EMRs by locally remembering individual patterns of a patient (via local memory) and globally remembering group evidence of disease (via global memory). In addition, we show how our model can be modified to classify the hidden states of EMRs from different patients at each time step into different phases that indicate the progressions of medications in terms of a specific disease, in an unsupervised manner. Experimental results on real EMRs data sets show that, by learning EMRs with external local and global memories, with regard to a given disease, our model improves the prediction performance compared with several alternative methods.

Keywords: neural network; global memory; memory; local global; memory neural

Journal Title: IEEE Transactions on Neural Networks and Learning Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.