This article investigates the multistability and stabilization of fractional-order competitive neural networks (FOCNNs) with unbounded time-varying delays. By utilizing the monotone operator, several sufficient conditions of the coexistence of equilibrium… Click to show full abstract
This article investigates the multistability and stabilization of fractional-order competitive neural networks (FOCNNs) with unbounded time-varying delays. By utilizing the monotone operator, several sufficient conditions of the coexistence of equilibrium points (EPs) are obtained for FOCNNs with concave-convex activation functions. And then, the multiple μ-stability of delayed FOCNNs is derived by the analytical method. Meanwhile, several comparisons with existing work are shown, which implies that the derived results cover the inverse-power stability and Mittag-Leffler stability as special cases. Moreover, the criteria on the stabilization of FOCNNs with uncertainty are established by designing a controller. Compared with the results of fractional-order neural networks, the obtained results in this article enrich and improve the previous results. Finally, three numerical examples are provided to show the effectiveness of the presented results.
               
Click one of the above tabs to view related content.