LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multistability and Stabilization of Fractional-Order Competitive Neural Networks With Unbounded Time-Varying Delays.

Photo by yanots from unsplash

This article investigates the multistability and stabilization of fractional-order competitive neural networks (FOCNNs) with unbounded time-varying delays. By utilizing the monotone operator, several sufficient conditions of the coexistence of equilibrium… Click to show full abstract

This article investigates the multistability and stabilization of fractional-order competitive neural networks (FOCNNs) with unbounded time-varying delays. By utilizing the monotone operator, several sufficient conditions of the coexistence of equilibrium points (EPs) are obtained for FOCNNs with concave-convex activation functions. And then, the multiple μ-stability of delayed FOCNNs is derived by the analytical method. Meanwhile, several comparisons with existing work are shown, which implies that the derived results cover the inverse-power stability and Mittag-Leffler stability as special cases. Moreover, the criteria on the stabilization of FOCNNs with uncertainty are established by designing a controller. Compared with the results of fractional-order neural networks, the obtained results in this article enrich and improve the previous results. Finally, three numerical examples are provided to show the effectiveness of the presented results.

Keywords: order competitive; neural networks; multistability stabilization; fractional order; stabilization fractional

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.