LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Event-Triggered ADP for Nonzero-Sum Games of Unknown Nonlinear Systems.

Photo from wikipedia

For nonzero-sum (NZS) games of nonlinear systems, reinforcement learning (RL) or adaptive dynamic programming (ADP) has shown its capability of approximating the desired index performance and the optimal input policy… Click to show full abstract

For nonzero-sum (NZS) games of nonlinear systems, reinforcement learning (RL) or adaptive dynamic programming (ADP) has shown its capability of approximating the desired index performance and the optimal input policy iteratively. In this article, an event-triggered ADP is proposed for NZS games of continuous-time nonlinear systems with completely unknown system dynamics. To achieve the Nash equilibrium solution approximately, the critic neural networks and actor neural networks are utilized to estimate the value functions and the control policies, respectively. Compared with the traditional time-triggered mechanism, the proposed algorithm updates the neural network weights as well as the inputs of players only when a state-based event-triggered condition is violated. It is shown that the system stability and the weights' convergence are still guaranteed under mild assumptions, while occupation of communication and computation resources is considerably reduced. Meanwhile, the infamous Zeno behavior is excluded by proving the existence of a minimum inter-event time (MIET) to ensure the feasibility of the closed-loop event-triggered continuous-time system. Finally, a numerical example is simulated to illustrate the effectiveness of the proposed approach.

Keywords: time; nonzero sum; event triggered; event; nonlinear systems; triggered adp

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.