LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temporal Network Embedding for Link Prediction via VAE Joint Attention Mechanism.

Photo from wikipedia

Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal networks are an important type of network… Click to show full abstract

Network representation learning or embedding aims to project the network into a low-dimensional space that can be devoted to different network tasks. Temporal networks are an important type of network whose topological structure changes over time. Compared with methods on static networks, temporal network embedding (TNE) methods are facing three challenges: 1) it cannot describe the temporal dependence across network snapshots; 2) the node embedding in the latent space fails to indicate changes in the network topology; and 3) it cannot avoid a lot of redundant computation via parameter inheritance on a series of snapshots. To overcome these problems, we propose a novel TNE method named temporal network embedding method based on the VAE framework (TVAE), which is based on a variational autoencoder (VAE) to capture the evolution of temporal networks for link prediction. It not only generates low-dimensional embedding vectors for nodes but also preserves the dynamic nonlinear features of temporal networks. Through the combination of a self-attention mechanism and recurrent neural networks, TVAE can update node representations and keep the temporal dependence of vectors over time. We utilize parameter inheritance to keep the new embedding close to the previous one, rather than explicitly using regularization, and thus, it is effective for large-scale networks. We evaluate our model and several baselines on synthetic data sets and real-world networks. The experimental results demonstrate that TVAE has superior performance and lower time cost compared with the baselines.

Keywords: attention mechanism; temporal network; vae; network embedding; link prediction; network

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.