LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive NN Optimal Consensus Fault-Tolerant Control for Stochastic Nonlinear Multiagent Systems.

Photo from wikipedia

This article investigates the problem of adaptive neural network (NN) optimal consensus tracking control for nonlinear multiagent systems (MASs) with stochastic disturbances and actuator bias faults. In control design, NN… Click to show full abstract

This article investigates the problem of adaptive neural network (NN) optimal consensus tracking control for nonlinear multiagent systems (MASs) with stochastic disturbances and actuator bias faults. In control design, NN is adopted to approximate the unknown nonlinear dynamic, and a state identifier is constructed. The fault estimator is designed to solve the problem raised by time-varying actuator bias fault. By utilizing adaptive dynamic programming (ADP) in identifier-critic-actor construction, an adaptive NN optimal consensus fault-tolerant control algorithm is presented. It is proven that all signals of the controlled system are uniformly ultimately bounded (UUB) in probability, and all states of the follower agents can remain consensus with the leader's state. Finally, simulation results are given to illustrate the effectiveness of the developed optimal consensus control scheme and theorem.

Keywords: multiagent systems; optimal consensus; consensus; control; nonlinear multiagent; fault

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.